Algebra 2

1-07 Use Inverse Matrices to Solve Linear Systems (12.4)

Identity Matrix

The Identity Matrix \qquad with any matrix of the \qquad dimension equals the \qquad matrix.
$A \cdot I=I \cdot A=$ \qquad
This is the matrix equivalent of 1
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
You cannot \qquad by a matrix!
So we \qquad by the \qquad of a matrix.
$A \cdot A^{-1}=$ \qquad

```
If }A,B\mathrm{ , and }X\mathrm{ are matrices, and
A}\cdot\boldsymbol{X}=\boldsymbol{B
A-1.A\cdotX = A-1.B
I}\cdotX=\mp@subsup{A}{}{-1}\cdot
X=
```


Inverse Matrix

The Rule for 2×2
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{-1}
$$

```
[ccc}\begin{array}{cc}{-2}&{-1}\\{4}&{0}\end{array}\mp@subsup{]}{}{-1
```


Solve a matrix equation

$A X=B$
$\left[\begin{array}{cc}-3 & 4 \\ 5 & -7\end{array}\right] X=\left[\begin{array}{cc}3 & 8 \\ 2 & -2\end{array}\right]$

Solve a system of linear equations

$2 x+y=-13$
$x-3 y=11$

